Extensions 1→N→G→Q→1 with N=C22⋊C4 and Q=C3⋊S3

Direct product G=N×Q with N=C22⋊C4 and Q=C3⋊S3
dρLabelID
C22⋊C4×C3⋊S372C2^2:C4xC3:S3288,737

Semidirect products G=N:Q with N=C22⋊C4 and Q=C3⋊S3
extensionφ:Q→Out NdρLabelID
C22⋊C41(C3⋊S3) = C62.110D4φ: C3⋊S3/C32C2 ⊆ Out C22⋊C472C2^2:C4:1(C3:S3)288,281
C22⋊C42(C3⋊S3) = C6212D4φ: C3⋊S3/C32C2 ⊆ Out C22⋊C472C2^2:C4:2(C3:S3)288,739
C22⋊C43(C3⋊S3) = C62.227C23φ: C3⋊S3/C32C2 ⊆ Out C22⋊C4144C2^2:C4:3(C3:S3)288,740
C22⋊C44(C3⋊S3) = C62.228C23φ: C3⋊S3/C32C2 ⊆ Out C22⋊C4144C2^2:C4:4(C3:S3)288,741
C22⋊C45(C3⋊S3) = C62.229C23φ: C3⋊S3/C32C2 ⊆ Out C22⋊C4144C2^2:C4:5(C3:S3)288,742
C22⋊C46(C3⋊S3) = C62.69D4φ: C3⋊S3/C32C2 ⊆ Out C22⋊C4144C2^2:C4:6(C3:S3)288,743
C22⋊C47(C3⋊S3) = C62.225C23φ: trivial image144C2^2:C4:7(C3:S3)288,738

Non-split extensions G=N.Q with N=C22⋊C4 and Q=C3⋊S3
extensionφ:Q→Out NdρLabelID
C22⋊C4.1(C3⋊S3) = C626Q8φ: C3⋊S3/C32C2 ⊆ Out C22⋊C4144C2^2:C4.1(C3:S3)288,735
C22⋊C4.2(C3⋊S3) = C62.223C23φ: C3⋊S3/C32C2 ⊆ Out C22⋊C4144C2^2:C4.2(C3:S3)288,736
C22⋊C4.3(C3⋊S3) = C62.221C23φ: trivial image144C2^2:C4.3(C3:S3)288,734

׿
×
𝔽